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Abstract—The boundary value problem for a circular elastic-plastic column in uniaxial compression is posed
in two ways. In one, the ends of the column are assumed to be cemented to rigid platens; while in the other they
remain shear free. For the latter end condition, one solution corresponding to a state of uniform uniaxial stress
is available for all values of applied compression. A class of bifurcation modes from this solution, that includes
Euler strut buckling and axisymmetric bulging as special cases, is investigated by means of the finite element
method. Here, it is found that the only bifurcation mode likely to be realized in elastic-plastic materials of the
class considered here (for realistic values of material parameters) is Euler strut buckling. The entire deformation
history of a stubby column cemented to rigid platens is also calculated. In this case, attention is confined to
axisymmetric deformations. The results obtained include the overall load—strain curve for the column cemented
to rigid platens and the stress and strain distributions at the mid section.

I. INFRODUCTION

THIS paper is concerned with the study of circular elastic—plastic columns under uniaxial
compressive loading. Here, the boundary value problem for uniaxial compression is
posed in two ways. In both a compressive displacement increment is prescribed at the ends
of the column. In one case these ends are required to remain shear free, while in the other
the ends are assumed to be cemented to rigid platens.

For the case of shear free ends, one solution, corresponding to a state of uniform
uniaxial stress is available for all values of applied compression. A class of bifurcation
modes from this solution is considered that includes Euler strut buckling and axisymmetric
bulging as special cases. The eigenvalue problem governing bifurcation is posed in terms
of a variational principle due to Hill [3, 4], and in this formulation, full account is taken of
both geometrical and material non-linearities. Separation of variables is then used in
conjunction with the finite element method to obtain a numerical solution to the eigen-
value problem.

A comparison is made between the results obtained here and those of previous workers.
For Euler strut buckling, the well known tangent modulus formula was first obtained as
the result of a plastic bifurcation analysis by Shanley [1]. Hill and Sewell [2] applied
Hill’s theory of bifurcation 3, 4] to obtain an approximate solution for the Euler buckling
of inelastic columns of arbitrary cross-section built in at one end. Hill and Sewell’s [2]
result differed from the tangent modulus formula mainly by a shear stiffening term. This
term is negligible for sufficiently long columns, the precise specification of *‘sufficiently
long” depending on the properties of the material of which the column is composed as
well as on the geometry of the column. Axisymmetric bulging of circular columns was
studied by Cheng, Ariaratnam and Dubey [5], for a class of incompressible elastic-plastic
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materials, although no numerical results were displayed. Recently, Newman [6] studied
the same class of bifurcation modes considered here for rigid-plastic Tresca materials.
Surprisingly Newman’s results [6] predict that, for stubby columns, the bifurcation stress
should be an oscillating function of length to diameter ratio. Furthermore, he found that
“higher order” modes had a lower critical stress than either Euler strut buckling or axi-
symmetric bulging.

For the column cemented to rigid platens, the full boundary value problem must be
solved for each increment of applied compression. Here, attention is confined to a stubby
column and the deformations are assumed to be axisymmetric. The boundary value
problem governing each increment is posed in terms of a variational equation of equi-
librium. This variational equation is solved by means of the finite element method and the
deformation history is calculated in a linear incremental fashion.

2. BASIC EQUATIONS

For completeness, the basic equations used in the bifurcation and incremental analyses
are presented in this section. The formulation given here is identical to that used in a
recent study of necking [12], where further details are given. Qur approach to the field
equations is adopted from [7 and 8].

The volume and surface of a body in an undeformed state are denoted by V and S
respectively, and each particle is labelled by a set of convected coordinates x' (i = 1,2,3)
which serve as independent variables. In the undeformed body, the covariant components
of the metric tensor are given by g;; and its determinant is denoted by g; while in the de-
formed body these quantities are given by G,; and G respectively.

The Lagrangian strain rate is given by

i = %(ui,j+aj,i+gpq(ﬂﬁ'u?j+ui'u,qj)) (1)

where u, are the covariant components of the displacement vector referred to the un-
deformed base vectors, and ( ), denotes covariant differentiation with respect to the
undeformed metric tensor. Here, the operation (') denotes differentiation with respect to
some monotonically increasing parameter that characterizes the load history. This param-
eter is taken to be the magnitude of the compressive displacement at the end of the
column, U.

The contravariant components of the Kirchhoff stress tensor on the embedded de-
formed-coordinates are denoted by g*. These are related to the contravariant components
of the Cauchy stress tensor, o, by

g* = (G/g)ta™ 2)

The stress rates ¢V are related to the strain rates #;; by a constitutive relation, to be
discussed subsequently, that is of the form

qij = Lij“f’kt‘ 3)

The instantaneous moduli have the symmetries L/ = L¥U = LM — [Mi! 3nd have
two branches, one corresponding to plastic loading and the other to elastic unloading.

The equation of continuing equilibrium may be formulated variationally as follows
[3, 4]: among all velocity fields that take on the prescribed velocities on S,,, the actual
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velocities satisfy
8 =10

where

1 y " .
1=5 [ Wi+ aig,anas)av— | Tads @
v

St

Here, q is the current stress state, L the corresponding tensor of moduli and T is given by
T = (g*+ g+ g .. {5)

The variational equation of equilibrium {4) serves as the basis for implementing a
finite element solution to the axisymmetric compression of a stubby column cemented to
rigid platens. An identity, foliowing from the principle of virtual work, that is useful in
this incremental calculation, is:

f [§;+4 jgqu‘g'ﬂ?i} v = J- T, ds. ©
v s

For the case of a column with shear free ends, one solution, corresponding to a state
of uniform uniaxial compression, is available for all values of U. This solution is termed
the fundamental solution and is unique for sufficiently small values of U. At some critical
compression, say U, a bifurcation from the fundamental solution first becomes possible,
Then, with the body in a state characterized by a displacement field u and a stress field g,
a non-trivial solution exists to the following set of homogeneous equations:

=5 L (g™t + ¢ Vg3 = 0 (72)
51=0 (7b)
4f=0 on S, (7¢)

Here, the superscript * denotes the difference between field quantities associated with the
fundamental solution and those associated with the second solution, and the strain rates
17 are related to the velocities by (1). This result, in its full generality, is due to Hill [3, 4].

If the increment in the fundamental solution at U, has the property that loading occurs
everywhere in the current plastic zone, the stress rates in {7a) are related to the strain
rates by

q'#ij - Lij"‘;ég, (7{1)

Furthermore, the branch of the tensor of moduli for plastic loading is to be used in (7d).
Thus, the system of equations (7) is independent of the loading-unloading criterion; and
in Hill’s [3, 4] terminology a linear comparison solid has been introduced.

Although no attempt is made here to study the post-bifurcation behavior of the column,
we note that the amplitude of the bifurcation mode is uniquely determined by the require-
ment that loading occurs everywhere in the current plastic zone, except at one point or
along one curve where neutral loading takes place {9].

The particular stress-strain law used in this study is of the form (3) and is a large-
strain generalization of J,-flow theory with isotropic hardening, due to Budiansky [10].
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It is assumed that the total strain rate can be written as the sum of the elastic strain rate,
1i5;» and the plastic strain rate, #¥;. The elastic strain-rate stress-rate relation is taken to be

1

i = E[%(l +V)(Gy 5+ G o7) —vG 6. (8)
Here, aj- are mixed components of Cauchy stress, v is Poisson’s ratio, and E is Young’s
modulus. This relation does not admit a potential in the large strain region, but when
linearized it does give Hooke’s law. Since this stress—strain law is intended to apply to
situations in which the elastic strains remain small, it is expected that the use of (8) instead
of a truly elastic relation will not result in significant error in the total strain. The yield
function for J,-flow theory with isotropic hardening is F = o,—c¢, where ¢ is either the
maximum value of g, over the stress history or the initial yield stress o,, whichever is
greater and g, is given by

O, = [%GiijISijSkl]% 9)
where
Sij == O’ij—%GijGuO'kl. (10)
The generalized flow rule takes the form
3(1 1\, 6, .
R R — L — = j >
2(E, E)S”oe ife,=candég, >0

= . {if(i) G, < ¢ (1)

or(io,=cand g, <0.

Here, E, is a function of the stress ihvariant ¢, and is the slope of the true-stress natural
strain curve in uniaxial tension.

The constitutive equations may be inverted to find the stress rates in terms of the
strain rates (as has been done by Chen [11]) to obtain

i — Giijl v Giijl_ iijl_ jkGil
d {sy(l T -2y o
3ASHSH E/E,—1 .
- 272 LE/ ] Nt - (12)F
2e(1+v)o; [3(1+v)+E/E —1]
Here,
{0 if(i)o, < cor(iijo,=c and S§;%,; <0 13)
1! ife,=c¢ and SY; =0
and
g, = % (14)

The contravariant components of Kirchhoff stress g;; differ from the contravariant
components of Cauchy stress by a factor (G/g)!. This factor is equal to the change in

t In (12) and subsequently all stress quantities are non-dimensionalized with respect to the yield stress, o,.
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volume between the deformed and undeformed configurations. Since the plastic strain
increments given by (11) are incompressible, the volume change is due entirely to the
elastic strains which are assumed to remain small. Hence, the approximation ¢ ~ g% will
involve little error and ¢” will be replaced by 4” in the constitutive equation (12).

An alternative derivation of the constitutive relation could proceed by replacing the
Cauchy stress components appearing in (8-11) with the corresponding Kirchhoff stress
components. In this derivation, however, the tangent modulus, E,, would differ slightly
from the slope of the true-stress natural-strain curve.

In the present study, two representations of uniaxial stress—strain behavior are used.
One is the Ramberg—Osgood relation given by

3) - —‘5)+a(3)". (15)
8), 72 a

y y
The other is a piece-wise power law of the form

(16)

Here, ¢ is the natural strain, o is the true stress, and n is the strain hardening exponent.
The Ramberg-Osgood relation is more convenient to use in Euler buckling calculations
since it exhibits a continuous tangent modulus, whereas the piece-wise power law is more
convenient in the incremental calculation as it gives rise to a sharp yield point.

In the Ramberg-Osgood relation (15), 6 = o, implies that ¢ = (1+a)e,, so that g, is
a reasonable approximation to the vield stress only if o is small. In this paper, o will always
be taken to be 0-1.

3. BIFURCATION ANALYSIS

The circular column studied here has initial length 2L, and initial radius R,.
Cylindrical coordinates are used with x! = r, x> = 8 and x* = z.

The column is compressed parallel to the z-axis, while the ends remain shear free. Also,
the lateral surfaces are required to remain traction free. Thus, the boundary conditions are

T'r, 0, + Lo} = T*r,0, + L) = 0 (17a)
uy(r,0, + L) = + U {17b)
TRy, 0,2) = 0 i=123 17¢)
The fundamental solution is given by
v = — (E )
2 Lo
Uy =0 (18)
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where
exp[ey(va+%a"):| -1 (19a)
b=
exp[sy(va+%(a" —al)):l -1 o>1 (19b)
and
. (_({) B {—exp[—sy(a+aa")]+1 (20a)
‘= Lo —exp[—&,06" +1 o= 1 (20b)

Here, (19a and 20a) are the fundamental solution for the Ramberg—Osgood representation
of unixial stress-strain behavior while (19b and 20b) are the fundamental solution for

the piecewise power law.
Now, we seek a bifurcation of the form

u¥ = v,(r) cos k0 sin(ﬁ)

" 2L,

U¥ = rog(r) sin k6 sin 2”—;) @1)
nZ

¥ = k6 —.

u} = v(r)cos cos( > Lo)

This assumed bifurcation mode satisfies both the shear free end condition (17a) and the
homogeneous velocity condition (7c) identically. When (21) is substituted into the bi-
furcation functional (7a) and the integrations with respect to 6 and z are performed, (7)
reduces to

Ro kv,\ 2 k k
IZJ {Cl[v;2+(u) ]+czvf+2c3v;(v’+ Ua)—2c4vz|:u’,+f'f_lﬁ’]
0 r r r

k 2 2
es| vo— [ 252 | | (o)1 4By, + (1 +a)
r 2L,

2 2
llho oz dfns o

81 = 0. (22b)

Here, ( ) denotes d/dr and the constants ¢, (i = 1, 6) depend on o, the effective stress at
bifurcation, and are determined from the constitutive equation (12).

The variational equations (22) will be used to determine an approximate critical stress,
o,, and an approximate eigenmode. The advantage of this formulation is that the trial
functions of the variational method need only satisfy the essential boundary conditions of
the problem. The natural boundary conditions are then satisfied approximately by the
solution of (22).

In the present problem, the essential boundary conditions depend on the azimuthal
wave number, k, and follow directly from the requirement that (22a) be finite. For k = 0,
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axisymmetric bulging, the only essential boundary condition is
,(0) = 0. (23)

While for the shear free conditions employed here it is possible for an axisymmetric
bulge to appear at one of the platens, we expect bulging to occur symmetrically about the
mid-plane of the column. Thus, for convenience, in the case of axisymmetric bulging, 2L,
will be identified as the half-length of the column, will be denoted by Ly, and we will
assume the axisymmetric mode is symmetric about the mid-plane of the column.

For azimuthal wave number k& = 1, the essential boundary conditions are

v{0)+v4(0) = 0 (24a)
v,(0) = 0. (24b)

Here, (24a) is equivalent to the requirement that G2?5%, be finite at r = 0. The essential
boundary conditions (24) apply to the bifurcation mode that is termed Euler strut buckling.
For k > 1, the essential boundary conditions are

1,(0) = 1(0) = v,(0) = 0. (25)

The condition that both v,(0) and v4(0) vanish arises from the requirement that the terms in
(22a) involving (v, + kv,)* and (v, +kv,)* vanish at r = 0. Thus, it is only possible for the
centerline of the column to deflect with k = 1 in the Euler buckling mode (24). However,
it is certainly possible to impose (25) for k = 1, although such a mode would have a bi-
furcation stress no less than the mode with essential boundary conditions (24). Here, for
comparison purposes, we will admit the possibility of a bifurcation mode with k = |,
satisfying (25).

The numerical method used to implement a solution to (22) is based on the finite
element method and is essentially the same as that used in a previous study of necking [12].
The interval [0, R,] is divided into sub-intervals of length h = R,/(j—1) where j is the
number of nodal points. The functions v,, v, and v, are taken to be linear in r in each sub-
interval.

To begin the bifurcation calculation, an initial guess is made for the critical stress,
o., and the corresponding instantaneous stiffness matrix is computed. The variational
equation (22b) becomes

Alg)x =0 (26)

where the symmetric matrix A is the assembled stiffness matrix after the appropriate
essential boundary conditions (23, 24 or 25) have been imposed and x is the vector of nodal
velocities.

Cholesky decomposition is used to factor A into

A=MM )
where M is a lower triangular matrix and M7 its transpose. Now,
det A = (det M)? (28)

and since det M is the product of its diagonal entries, det A vanishes when one of these
diagonal entries, say M, is zero. A Newton—-Raphson type iteration was used to deter-
mine the smallest value of ¢, for which det M = 0. Then, by deleting the ith equation and
setting the nodal velocity x; equal to unity, the bifarcation mode is calculated.
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Finally, for the case of axisymmetric bulging, k = 0, and elastic incompressibility,
v = %, an explicit analytical bifurcation criterion may be obtained as has been done by
Cheng, Ariaratnam and Dubey [5].

The case of strict material incompressibility requires a slight modification of the
bifurcation analysis, since a hydrostatic pressure must now be introduced. However, this
calculation parallels that in [5] and only the final result will be given here. The bifurcation
condition is

(1 — g1\ (mg,)[ f1J(mqy)—mq,Jo(mg,)( f>+43)]

= (1—g3)J\(mg,) [ f,Js(mq,)—myq,Jo(mq,)(f> +47)]. (29)
Here, Jo( )and J;( )are Bessel functions of the first kind of order zero and one respectively
and
_ (Ro| 140
41 = 2=39) (1 =3¢)+i(4—9y* —(1-3¢)*)*]* (31a)
gy = 2=39) (1 =3¢)—i(4—9%* —(1 = 3¢)*)*]F (31b)
4
h=5_3 (31¢)
_ 693y
h=5y (1d)
E,
o=¢ (322)
O-C
Y= = (32b)

where i = (—1)%, a and b are determined by (19 and 20) with v = 4, and L, is the half-
length of the column.

4. BIFURCATION RESULTS

The main result of the bifurcation calculations is that the only bifurcation mode likely
to be realized in elastic—plastic materials of the class considered here (for realistic values
of material parameters), is Euler column buckling. Other modes are probably available
but they require such enormous compressive strains to be activated that it is doubtful
they could be experimentally achieved.

In Fig. 1, the bifurcation stress for Euler buckling is shown for a Ramberg-Osgood
material with n = 8, ¢, = 00072, v = 1, @ = 0-1. Also shown in this figure are curves
obtained from two approximations; one is the Rayleigh—Ritz approximation of Hill and
Sewell [2]. Here, specialized to the case of a circular column with shear free ends, the
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FiG. 1. Curve of critical stress vs length to diameter ratio for Euler buckling (Ramberg-Osgood material
with n = 8,¢, = 00072, v = §, 2 = 0-1).

approximate velocity field is given by

-1 1 \+b)
o= (1—+5)+§('21';) axaf (332)
1 = \2(+b) ,
"o (1+b)+5(2L&) (ra )
s 1
Pz = (E)(Ha)r (33¢)

where a and b are determined from (19 and 20) and f§ is given by
E
f=tr-by (4

When (33) is substituted into the bifurcation functional (22a), the following approximation
is obtained for the bifurcation stress, ..

1+1n_R021+b2+1B R\ *[1+b}*
% " Ta\2L,) \1+a) T247 \3L,/ \1+a
1{nRo\2[1+b 1| E (TR *[1+b)*
- — [— 5
4(2L0) ( ) °)+24(1+ “f)ﬁ (2Lo I+a (33)
The tangent modulus formula is obtained by neglecting the shear stiffening term on the
right hand side of (35) and by neglecting both terms on the left side of (35) involving the
ratio (mRy/2L,).

For length to diameter ratios greater than 3, the full numerical solution, the Ritz
approximation (35), and the tangent modulus formula all agree within 1 per cent. For
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more stubby columns the difference is greater, but all give qualitatively similar resuits. In
particular all predict a minimum length to diameter ratio at which Euler buckling is
possible. Actually, for stubby columns, the tangent modulus formula is slightly closer to
the numerical solution than the Ritz approximation. We note that although this is true
for a circular column with the material parameters used here, it may not be true for columns
with other cross-section shapes or other values of the material parameters.

As expected, the critical stresses (obtained by the full numerical calculation) did not
depend very much on Poisson’s ratio, v. Here, it was found that for n = 8, ¢, = 0-0072,
a = 0-1, Lo/R, = 6, varying v between % and 0-48 altered o, by less than 0-1 per cent.

In most cases, 21 points (Ar = 0-05) were used in the calculations performed to obtain
Fig. 1. For certain values of L,/R,, these eigenvalue caiculations were repeated with
11 points (Ar = 0-1) and 41 points (Ar = 0025). The bifurcation stresses obtained with
11 points agreed with those obtained with 41 points to at least three significant figures.

We note that a slight modification of the iteration procedure described in Section 3
was needed to obtain the upper portion of the curve in Fig. 1. Here, the bifurcation stress
o, was fixed and the iteration was performed on (Ly/R,).

Forn=28,¢, =00072, . = 0-1, v = 1, a numerical search revealed no other mode
with a critical compressive strain U/L, less than 0-99. It was not possible to determine
whether or not bifurcation occurs in the range 1 > U/L, > 0-99, because computation
for such large compressions is extremely difficult.

The unsuccessful search for axisymmetric and higher order modes was conducted as
follows. At several values of Ly/R, > 1-75 m a search was made for a mode with a bi-
furcation stress less than that for Euler strut buckling and none was found. For Ly/R,
< 1-75 an extensive search was made for any mode with a critical compressive strain
U/L,, less than 0:99. A computer program was written to evaluate the analytical bi-
furcation criterion (29) in which v = 1, The criterion (29) was evaluated for values of
U/L, up to 099 and no bifurcation was found. Also, the finite element program based on
(22) revealed no axisymmetric or higher order modes with a critical compressive strain,
U/Ly, less than 0-99. These finite element calculations were performed with 501 points
(Ar = 0-002). Thus, our results indicate that for n = 8, ¢, = 00072 and Ly/R, < 1.75, the
height of the column can be reduced to 155 of its original value, without bifurcating from
the fundamental solution.

The conclusion that stubby columns of structural metals do not bifurcate is not with-
out some experimental support. Phillips [13] has reported unpublished experimental
work by Jovane at the National Engineering Laboratory, East Kilbride, in which homo-
geneous compressive strains of up to 0-99 were achieved in structural metals by carefuily
lubricating the specimen-platen interface. However, Phillips [13] did not report the
original length to diameter ratio {Ly/R,) of the specimens used.

For an unrealistically high rate of hardening (n = 2), bifurcation results were obtained
for a variety of modes. These results are displayed in Table 1. Note that reductions in
height of more than 92 per cent are required for bifurcation. The critical stress obtained
for axisymmetric bulging from (29), in which v = 3, was 56-71¢,. This differs by about
1-5 per cent from the result in Table 1, where v = .

Figure 2 shows the bifurcation mode obtained for axisymmetric bulging (k = 0).
Nearly all the deformation is confined to a small region near the lateral surface of the
column. This is also characteristic of the modes obtained for the higher values of azimuthal
wave number, k. Although, of course, these modes involve vy as well as v, and »,. The mode
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TABLE 1. BIFURCATION STRESSES FOR # = 2, ¢, = 00072, v = },a = 0-1

Azimuthal . . Compressive
wave No. Column Bifurcation stress ) strain at (U/Ly),
k dimensions Yield stress € bifurcation
0 Ly/Ry =1 5601 - 09300
1f Lo/Ry =1 5549 —0:9268
1 Lo/Ry =1 5549 -~ {-9268
2 Ly/Ry =1 55.53 -09271
4 Lo/Ry =1 5570 —09281
6 Lo/Ry =1 5596 -09298
9 Lo/Ry =1 56-45 -09327
14 Lo/Rg =1 5734 -0:9379

+ Euler column buckling.

in Fig. 2 is similar to that obtained by Vaughan [14] for axisymmetric bulging of elastic
solids.

As can be seen in Table 1, both modes with azimuthal wave number, k, equal to unity
have approximately the same bifurcation stress. This is because the Euler buckling mode
is nearly the same as that obtained from the mode corresponding to the boundary con-
ditions (25), in fact for Euler buckling

vl0) = —vg(0) = —6x 1072 x v,(Ry). (36)

This indicates that the curve of critical stress versus length to diameter ratio, L,/R,, is
qualitatively different for n = 2 from the corresponding curve for n = 8. For the case
n = 2, as Ly/R, decreases, v,(0) and v,(0) obtained from the bifurcation mode for Euler
buckling decrease until they almost vanish and the two modes with k = 1 become nearly
identical. On the other hand, for n = 8 the curve begins to bend back at Ly/R, = 1.75,
o. = 1-87. At this point

0,00) = —vy0) = —0:98 x v,(R,). 37)
.
12}
€ osl v
}N
St t:
% 0-4f-
Pl omoyfon
& r i 5 1 L33 1 3
o %2z o4 o6 o8 ° e
_04...

FiG. 2. Axisymmetric eigenmode forn = 2,¢, = 00072, v =4, = 01, Ly/R, = 1.
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Also, the results in Table 1 show that the critical stress for k = 0 is greater than that
for k = 1, but for k > 1 the critical stress is a slowly increasing function of azimuthal
wave number k.

We note that these calculations required far more points than were required for Euler
strut buckling. Most of the results displayed in Table 1 were obtained with 501 points
(Ar = 0:002). A few calculations were repeated with 651 points (Ar = 0-00154) and the
critical stresses obtained in these calculations were within 0-8 per cent of the values
obtained with 501 points.

As stated in the Introduction, the results obtained here are quite different from those
obtained by Newman [6]. Newman'’s formulation of the problem was different from that
employed here and he considered rigid plastic Tresca type materials. For long columns,
Newman’s results [6] for Euler strut buckling were in fairly close agreement with the
tangent modulus formula, but for stubby columns he found that the critical stress was an
oscillating function of Ly/R,. Also, for long columns, Newman [6] found that there were
higher order modes with critical stresses less than the critical stress for Euler buckling.

5. RESULTS FOR A STUBBY COLUMN CEMENTED TO RIGID PLATENS

In this section, the results of an incremental calculation of the deformation history of
a stubby column will be presented. The column is of initial length 2L, and initial radius
R,. Here, only axisymmetric deformations will be considered, and, in addition, it is
assumed that the deformations are symmetric about the midplane z = 0. We imagine the
column to be cemented to rigid platens so that at z = L, the boundary conditions are

y(r,Ly) =0 tty(r, Ly) = — U. (38)

Subsequently (38) will be referred to as the cemented end condition.
In this calculation the piece-wise power law model of uniaxial stress strain behavior
is employed with the following set of material parameters:

n=28 g, = 00072 v =1, (39)

also, the ratio Ly/R, is taken to be one.

A numerical solution to the incremental equilibrium equation (6) is obtained by means
of the finite element method. The computer program used to implement this solution is
identical to that employed in a recent study of necking [12] except, of course, that here a
negative displacement increment is applied at z = L. Since a description of the numerical
procedure is given in [12], only some of the features of the calculation will be described
here. Further details are given in [12].

1. A grid with 613 nodal points was used, arrayed as shown in Fig. 3 with Ar = Az
= 7=, and the displacement increments are taken to be linear in r and z in each element.

2. The load increment is calculated from the identity (6), instead of by extrapolation
of element stresses to the boundary.

3. Loading or unloading in each element is determined as follows: if the stress state
of an element is on its current yield surface, the loading branch of the moduli are taken to
be active. If o, for that element turns out to be negative, elastic unloading takes place in
the next increment. This procedure is only accurate if small increments are used and the
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FI1G. 3. Coarse version of finite element grid.

transition from loading to unloading (or vice versa) in any element occurs smoothly and
only once or twice during the loading history.

The curve of load versus engineering strain is shown in Fig. 4. For comparison pur-
poses, the curve obtained from (19b and 20b) for the case of shear free ends is also shown.
It can be seen that the curve for the cemented end condition has a higher apparent yield
stress, even though local plastic deformation has taken place at loads below o,. At large
strains (U/Ly, > 0075), the curves are nearly parallel, indicating that, although the
cemented column is “'stiffer” than the column with shear free ends, the apparent rate of
hardening is nearly independent of the boundary conditions.

The radial displacement at the mid-section (z = 0) is shown in Fig. 5 for both sets of
end conditions. As expected, the radial displacement at z = 0 is greater for the column

Ends cemented to
-8 rigid grips

Load/ yield stress

0-4ll-
o21-
00 1 1 1

00 005 010 015 0-20
(7773

H
F1G. 4. Curves of load vs compressive strain (n = 8, ¢, = 0-0072, v = §, L,/R, = 1).
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FiG. 5. Curves of radial displacement at midsection vs compressive strain {# = 8, &, = 00072, v = §,
Lyu/Ry = 1.

with cemented ends, which **bulges™ out, than for the column with shear free ends, that
expands uniformly.

In Fig. 6, the current plastic zone and deformed shape of the column with cemented
ends is shown at various stages of compression. The plastic zones displayed here were

Ut = 00065 ) un, = 0009
&
€
-2z O
v, = 0037 UhL, = 0157

F1c. 6. Development of plastic zone (shaded area) and deformed configuration for stubby column
cemented to rigid grips (7 = 8, &, = 00072, v = {, Ly/R, = 1).
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obtained by sketching smooth curves through the elements on the elastic plastic boundary.
Plastic deformation begins in a small region near the lateral surface of the column at the
cemented end. Then, a large region of plastic deformation appears near the axis of the
column along the midsection z = 0. This region grows and finally links up to the small
region at the lateral surface of the column. Hereafter, the plastic zone grows slowly and
even at the last stage shown (U/Ly = 0-157) there is a region that has not yet yielded. It
can also be seen from this figure that the bulge that develops is not very pronounced.

Next, Fig. 7 shows sketches of contours of constant effective stress, in the original con-
figuration, at two stages of compression. In the early stage of compression, U/Ly = 0009,
the regions of high effective stress are confined to the corners z =0, r = 0 and z = Ly,
r=R,. At z = Ly, r = R, the stresses are singular, but as can be seen in this figure the
high stresses due to the singularity are confined to the elements bordering this corner.
However, at the latter stage a diagonal band has developed that links the two regions of
high effective stress.

The next three figures show the strain and stress distributions at the midsection, z = 0.
As in [12], these are not actually the distributions at z = 0 but are the stresses and strains
associated with the nodes on the line BC of Fig. 3.

The strain distributions are shown in Fig. 8, at two stages of compression. It can be
seen in this figure that the strain components reach their peak values on the axis of the bar

- 1{-{4

a— 60

U/LH= Q187

F16. 7. Contours of effective stress in original configuration for two stages of compression (n = 8,
g, = 00072, v =, Ly/Ry = 1).
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F1G. 8. Strain distributions at midsection at two stages of compression {n = 8, ¢, = 00072, v = 3,

024

Q-8

0-06

0-00

A.

NEEDLEMAN

——uit, = 0157
———4/iL,, = 0037

-0086

-0-12

-0-18

~024

i

Ly/Re = 1.

and that these peaks become accentuated as deformation proceeds. Also, note that »,,
and #,, are not equal except near r = 0.

Finally, Figs. 9 and 10, respectively, display the stress distributions at the midsection
for U/Ly = 0037 and U/Ly = 0-157. Surprisingly, each stress component reaches a local
minimum slightly off the axis of the column. This minimum is sharper in the latter stages
of compression. However, the effective stress does reach its maximum at r = 0. Two

Stress / yield stress

6

00

-06

-1-2

-1-8

i -G}I
— /G-g
- e/
L riR e a8
1/8 2/5 3/5 ~4/5
! e T —
i =

Fi6. 9. Stress distribution at midsection at U/Ly, = 0037 (n = 8,5, = 00072, v = §, Ly/R, = 1}
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FIG. 10. Stress distribution at midsection at U/Ly = 0157 (n = 8,5, = 00072, v = §, Ly/R, = ).

noteworthy features of the stress distributions are ; a positive hoop stress, ¢4, at the lateral
surface and the fact that the effective stress obtained here is not uniform across the mid-
section.

Also shown in Figs. 9 and 10 is the triaxial tension given by

p= %(Grr + Cap + Crzz}~

This quantity is of particular importance since it is currently thought, see [15], that an
important mechanism of ductile fracture is the growth and coalescence of voids driven by
a positive triaxial tension. Here, p is found to be least negative at r = R,, that is, at the
lateral surface. Furthermore, the triaxial tension at r = R, becomes less negative as
deformation proceeds. Unfortunately, the present calculation could not be continued far
enough for p at the lateral surface to become positive. However the experiments of Kuhn
and Lee [16], which show voids developing on the surface of a circular cylindrical com-
pression specimen, lend support to the contention that the triaxial tension does eventually
become positive at r = R,.
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Abcrpakr—/lawoTes apa pa3Hsix cnocoba GopMyNUpoBKY Kpaesoit 3anadyn ONA KPyrioH, ynpyro-uacTuy-
€CKOM KOTIOHHBI, NMOK BAUAHMEM OJHOOCHOIO CXKaTHi. BO NEPBOM. NPEANIONAraeTcs KOHHBI KOMOHHBI
SBASIOTCH NPHKPEIUICHHLIME K XECTKMM TUTHTaM, TOTZA KaK B APYrom OHH cBoboausl ot cgeura. ns
ITOFO NOCACOHETO KPAEBOIO YC/IOBMS, MONYHRETCA ONHO PEIUCHME, KOTOPOE COOTBETCTBYET COCTORHHIO
OHOPOXHOTC, OXHOOCHOTO HANPSHKEHHS ANA BCEX 3HAYCHHH NPKHICKEHHOrO cXaTtus. MeToKoM KOHEYHOTO
INEMEHTA HCCAEAyeTCH xinace gopm Oudypxrauun ans 3T1oro pelsexus. B KauecTae CHELHANBHBIX ClIYYAEB,
ITOT K/ACC 3AK/BOYAET IPOACABHBIN H3THO CTOHKH B CMbICHe JHIEpa H OCECHMMETPHYECKOE BTy YHBAHME.
OxaseiBaeTCs 3aTeM, 4TO eauHcTBeHNol dopMoll Gudypkaium, KOTOPYH MOXHC BEPOSTHO DEANHIOBATEH
B YIPYTO-AGCTHYECKHMX MATEPHAIAX, DACCMATPHBAEMOTO 34eCh Kacca [Hiis peanpHbiX 3Hayennit napamer-
pos marepuanal, seiseTcs ApoRosbHBH WIrnl crepxkHs B CMbicne Jilnepa. FMoacuussisaercs, TAKXKE,
nonuas ucropus aedopMmanuy IS KOPOTKOR KOIOHHBI, NPHKPEIUTEHHON K KecTKkuM nmurtam. Jng sr1oro
Cliy4asi, OTPaHWMHBACTCH BHHMAHHE K OCECHMMETpHHecKMM Rethopmaumsam. [MosyyenHsie pesyNnbTaThi
MIPUBOOAT NOAHYIO KPHBYIO HATPY3Ka—aeGopMaLing, ASig KONOHHNDI, IPUKPENNICHHON K XKECTIUM TUIHTAM B
pacnpenencHue Hanpsxenui ¥ gedopmaumit 2t CPERAHETO CEYCHHN.



